Обзор методов оксидирования стали

Метод оксидирования стали представляет собой действия, направленные на образование на поверхности металла оксидной пленки. Задача оксидирования в создании покрытий, которые будут нести декоративную и защитную функции. Кроме того, с помощью оксидирование образуются диэлектрические покрытия на конструкциях из стали.

 

Особенности оксидирования

Существует несколько способов оксидирования:

  • химический;
  • плазменный;
  • термический;
  • электрохимический.

Химический способ

Химическое оксидирование https://karbaz.com.ua/nashi-uslugi/oksidirovanie/ означает обработку поверхностей специальными расплавами, нитратными, хроматовыми растворами, а также другими окислителями. В результате, удается повысить антикоррозийные качества металла. Такие мероприятия проводятся с использованием кислотных или щелочных составов.

Щелочное оксидирование осуществляется при температурах 30-180 градусов. Основной компонент составов — луга, а окислителей добавляется совсем немного. После процедуры детали промывают и высушивают. Иногда после оксидирования проводится промасливание.

Азотная кислота

 

Кислотное оксидирование проводится с применением нескольких кислот (ортофосфорная, соляная, азотная) и небольших количеств марганца. Температурный режим процесса — 30-100 градусов.

Химическое оксидирование перечисленных разновидностей дает возможность получить пленку неплохого качества. Хотя нужно заметить, что электрохимический способ позволяет получить изделия высокого качества.

Холодное оксидирование (чернение) также относится к химической методике. Осуществляется погружением детали в раствор с последующим промыванием, сушкой и промасливанием. В результате, на поверхности образуется кристаллическая структура с наличием фосфатов и ионов. Особенностью технологии является относительно низкая рабочая температура (15-25 градусов по Цельсию).

Схема холодного чернения

Преимущества чернение в сравнении с горячим оксидированием:

  • детали лишь незначительно меняют свои размеры;
  • более низкий уровень потребления энергии;
  • высокий уровень безопасности;
  • нет испарений;
  • изделия имеют более равномерный цвет;
  • методика позволяет оксидировать даже чугун.

Анодне оксидування

Электрохимическое оксидирование (анодное методика) проводится в жидкой или твердой электролитной среде. Такой подход позволяет получить пленки высокой прочности таких видов:

  • покрытие с тонким слоем (толщина — 0,1-0,4 мкм);
  • устойчивые к износу электроизоляторы (толщина 2-3 мкм);
  • защитные покрытия (толщина 0,3-15 мкм);
  • особые эмалевидные слои (эматаль-покрытия).
Анодирование алюминия
Схема анодирования алюминия

Анодирование поверхности окислительной детали проводится на фоне положительного потенциала. Подобную обработку следует проводить, чтобы защитить части микросхем, а также создать на полупроводниках, стали, металлических сплавах диэлектрический слой.

Обратите внимание! В случае необходимости, анодирование можно провести самостоятельно, однако необходимо четко придерживаться правил техники безопасности, поскольку в работе применяются агрессивные элементы.

Частный случай электрохимического оксидирования — микродуговое оксидирование. Методика дает возможность добиться уникальных декоративных свойств. Металл обретает дополнительную устойчивость к теплу и устойчивость к коррозионным процессам.

Схема микродугового оксидирования
Схема микродугового оксидирования от источника питания

Микродуговой метод отличается применением импульсного или переменного тока в слабощелочной электролитной среде. Таким образом, удается получить толщину покрытий в районе 200-250 мкм. Готовое изделие после обработки становится похожим по внешнему виду с керамикой.

Микродуговое оксидирование можно осуществить и самостоятельно, однако понадобится соответствующее оборудование. Особенность процесса заключается в его безопасности для здоровья человека. Именно этот факт предопределяет все большую популярность методики среди домашних умельцев.

Особенности плазменного и термического процессов

Термическое оксидирование означает возникновение оксидной пленки в среде водяного пара или другой содержит кислоту атмосфере. При этом процесс характеризуется высокой температурой.

Самостоятельно выполнить такую операцию не представляется возможным, поскольку потребуется специальная дорогостоящая печь, где металл разогревается до 350 градусов. Однако в данном случае речь идет о низколегированных сталях. В случае же среднелегированных и высоколегированных сталей, температура должна быть еще выше — в районе 700 градусов. Общая продолжительность оксидирования с термической методике — около одного часа.

Также не получится играть дома и плазменный процесс. Такое оксидирование осуществляется в низкотемпературной кислородосодержащей плазме. Сама плазменная среда возникает благодаря СВЧ и ВЧ разрядами. Иногда используется постоянный ток. Особенность технологии — высокое качество получаемой продукции. Поэтому плазменное оксидирование используется для создания качественных покрытий на особо ответственных изделиях, к числу которых относятся:

  • поверхности кремния;
  • полупроводники;
  • фотокатоды.

Самостоятельное оксидирование

Описываемый здесь способ создания защитного покрытия на изделиях из стали доступен каждому. Сначала деталь зачищается и полируется. Далее с поверхности нужно убрать окислы (сделать декапирование). Деталь Декапируют в течение минуты с помощью 5%-ного раствора серной кислоты. После погружения, деталь нужно промыть в теплой воде и перейти к пассивирование (5-минутное кипячение в растворе литра обычной воды с разведенными в ней 50 г хозяйственного мыла). Таким образом, поверхность подготовлена к процедуре оксидирования.

Едкий натр - гироксид натрия

Последовательность дальнейших действий:

    1. Берем емкость с эмалевым покрытием. Она не должна быть поцарапана, на ней не должно быть сколов.
    2. Наливаем в емкость литр воды и добавляем в нее 50 граммов едкого натра.
  1. Ставим емкость на огонь и нагреваем раствор примерно до 150 градусов.

Через 1,5 часа деталь можно извлекать — оксидирование закончено.

Защита титана и его сплавов

Как известно, титан отличается невысокой устойчивостью к износу. Оксидирование титана и сплавов на его основе повышает их антифрикционные качества, улучшает устойчивость металла к коррозии.

 

В результате нанесения защитного слоя на древесине образуются толстые оксидные пленки (в диапазоне 20-40 мкм), обладающих повышенными абсорбционными свойствами.
Конструкции из сплавов титана обрабатывают при температуре 15-25 градусов в растворе, включающий 50 граммов серной кислоты. Плотность тока составляет 1-1,5 Ампер на квадратный дециметр. Продолжительность процедуры — 50-60 минут. Если плотность тока превышает 2 Ампера на квадратный дециметр, продолжительность процесса уменьшается до 30-40 минут.

Во время нанесения защитного слоя, первые 3-6 минут поддерживается рекомендуемая плотность тока, а напряжение в это время увеличивается до 90-110 Ст. За достижение данного показателя, плотность тока снижается до 0,2 Ампера на квадратный дециметр. Продолжается оксидирования без регулировки тока. В ходе процесса электролит перемешивается. Используются катоды из свинца или стали.